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Abstract. New integrable boundary conditions for integrable quantum systems can be constructed
by tuning of scattering phases due to reflection at a boundary and an adjacent impurity and
subsequent projection onto subspaces. We illustrate this mechanism by considering agl(m < n)-
impurity attached to an opengl(n)-invariant quantum chain and a Kondo spinS coupled to the
supersymmetrict–J model.

1. Introduction

Studies of integrable models with open boundary conditions have attracted much interest
recently. The exact solutions of these systems provide important insights into the nature of
bound states due to the presence of local potentials and properties of impurities coupled to
one-dimensional quantum systems [1–9].

The classification of open boundary conditions for integrable quantum chains is possible
within the framework of the quantum inverse scattering method (QISM) [10] by supplementing
the Yang–Baxter equation—which guarantees the factorizability ofN -particle scattering
processes in the bulk of the system—with the reflection equation (RE) algebra to ensure
compatibility of two-particle scattering and particle–boundary scattering [11, 12]. The simplest
solutions to this RE algebra arec-number matrices with entries corresponding to the phase
shifts due to (static) boundary fields in the different channels. In general, such boundary fields
will break the symmetry of the model: in spin chains they have been identified as magnetic
fields acting on the boundary sites [12], for thegl(2|1)-invariant (supersymmetric)t–J model
the (diagonal)c-number solutions of the RE correspond to boundary chemical potential and
boundary magnetic fields, respectively [2, 13]. Dynamic impurities located at the boundary
can also be described in terms of solutions to the RE: as observed in [12] ‘dressing’ ofc-number
boundary matrices with local monodromy matrices generates new solutions to the RE with
elements acting non-trivially in an impurity Hilbert space. Such operator-valued solutions
to the RE—called ‘regular’ in the following—have been used to construct models of spin-S

chains with spin-S ′ impurities located on the boundary site (see, e.g., [4, 5]). All of these
models are similar in that operators acting on the quantum space of the impurity need to be
chosen among representations of thesamealgebra as the ones acting on the bulk sites, for
exampleSU(2) for Heisenberg models orgl(2|1) for the supersymmetrict–J model, just as
in the corresponding closed chain systems [14].

Integrable models of Kondo impurities in one-dimensional electronic continuum [6, 7]
(recently rediscovered in [15]) and lattice models [8, 9] which have been solved by means of
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the coordinate Bethe ansatz appear not to fit into this scheme: in these systems the quantum
space of the impurity is a projection of the symmetry group onto a subgroup acting only on the
spin-degree of freedom. Recently, Zhou and coworkers [16, 17] have succeeded in formulating
the model of a Kondo impurity in thegl(2|1)-symmetrict–J model [8, 9] in the framework
of the RE algebra. They have found an operator-valued solution to the RE which apparently
cannot be obtained by the ‘regular’ dressing procedure withgl(2|1)-symmetric monodromy
matrices containing the impurity degrees of freedom. Instead, they propose a decomposition
into ‘singular’ matrices withSU(2) spin operators as entries.

In this paper, we introduce a method which allows projection of ‘regular’ solutions of
the RE to a certain subspace of the impurity’s Hilbert space after adjusting the boundary
phase shifts of thec-number matrix to the ones due to the dressing impurity. In the following
section we briefly review the RE formalism and formulate the necessary conditions for the
application of the projection method. In section 3 we apply this method to the case ofgl(n)

algebra. Finally, we show how to obtain the ‘singular’ boundary matrices of [16, 17] within
this approach.

2. General method

Before consideration of the specific cases we would like to formulate our approach in general.
The classification of integrable boundary conditions within the QISM is based on

representations of two algebrasT± [12]. The RE forT−(u) has the form

R12(u1− u2)
1
T−(u1)R21(u1 + u2)

2
T−(u2) =

2
T−(u2)R12(u1 + u2)

1
T−(u1)R21(u1− u2). (2.1)

Here we use standard notations
1
T−(u) = T−(u)⊗I and

2
T−(u) = I⊗T−(u). The RE forT+(u)

will not be considered in the present paper: the solutions of these equations are related to (2.1)
by an automorphism [12]. In the Hamiltonian limitT±(u) determine the boundary terms of

the quantum chain. For example, the solutions of (2.1) lead to an operator∂u
1
T−(u = 0) acting

on the first site of the chain. For details we refer the reader to [12].
TheR-matrix satisfies the quantum Yang–Baxter equation (YBE)

R12(u)R13(u + v)R23(v) = R23(v)R13(u + v)R12(u). (2.2)

As usualR21(u) = P12R12(u)P12, whereP12 is the permutation operator. The unitarity
property of theR-matrix is assumed to hold

R12(u)R21(−u) = ρ(u) (2.3)

whereρ(u) is a scalar function.
As we have mentioned already in the introduction, operator-valued (quantum) solutions

of the RE (2.6) can be constructed following [12]: letL(u) be a quantum solution of the
intertwining equation of the QISM:

R12(u1− u2)
1
L(u1)

2
L(u2) =

2
L(u2)

1
L(u1)R12(u1− u2). (2.4)

The entries of theL-operator are quantum operators, acting in a Hilbert spaceH.
Given a solution of (2.4) we define an operator-valued matrixK−(u) as

K−(u) = L(u)T (u)L−1(−u) (2.5)

whereT (u) is ac-number solution of (2.1). Then one can check [12] that the quantumK−(u)
boundary matrix solves the RE:

R12(u1− u2)
1
K−(u1)R21(u1 + u2)

2
K−(u2) =

2
K−(u2)R12(u1 + u2)

1
K−(u1)R21(u1− u2).

(2.6)
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In what follows we shall refer to the formula (2.5) as ‘regular’ factorization. Similarly, we call
the correspondingK-matrix the ‘regular’ solution of the RE.

In [17] a new type of RE solution was found. This newK-matrix cannot be presented in
the form (2.5). Instead, the authors proposed so-called ‘singular’ factorization

K−(u) ≡ Ks(u) = lim
ε→0

Lε(u)L
−1
ε (−u) (2.7)

where theLε-operator depends on the auxiliary parameterε. The special feature of this
solution is that factorization (2.7) is valid for arbitraryε (i.e.Ks(u) does not depend onε)
which allows one to omit the limit in (2.7). On the other hand, the operatorLε satisfies the
intertwining relation (2.4) in the limitε → 0 only, but the limitε → 0 for L−1

ε (u) does not
exist. Following the authors of [17] we call the representation (2.7) ‘singular’ factorization
and the correspondingK-matrix the ‘singular’ solution of the RE, in spite of its well-defined
limit for ε → 0.

In the present paper we show that these ‘singular’ solutions are nothing but projections of
suitably chosen ‘regular’ ones. Our approach is based on the following simple observation.
Consider some ‘regular’ solution of the RE, obtained by the standard procedure (2.5). The
entries of such a quantumK-matrix are operators, acting in the same spaceH as the entries of
theL-operator. Now consider two orthogonal subspacesH1 andH2, such thatH1⊕H2 = H,
characterized by projectorsπ1 andπ2, respectively. Then it is easily seen that vanishing of
one of the projectionsπ1K−(u)π2 or π2K−(u)π1,

π1K−(u)π2 = 0 or π2K−(u)π1 = 0 (2.8)

implies that the projectionsπ1K−(u)π1 andπ2K−(u)π2 of the operatorK−(u) onto the sub-
spacesH1 andH2 solve the RE:

R12(u1− u2)(
1

πiK−(u1)πi)R21(u1 + u2)(
2

πiK−(u2)πi)

= (
2

πiK−(u2)πi)R12(u1 + u2)(
1

πiK−(u1)πi)R21(u1− u2) (2.9)

wherei = 1, 2. Thus, new quantum solutions of the RE can be generated via projection of the
originalK-matrix onto a subspace of its quantum Hilbert space.

The first problem, however, is to find the decompositionH1 ⊕ H2 = H, possessing the
property (2.8). For an arbitraryK−(u) boundary matrix such a decomposition may not exist.
Nevertheless, as will be demonstrated later, this decomposition is possible for certain solutions
of the RE of the type (2.5) where thec-number factor has been properly adjusted to the dressing
L-operators. In particular, the solution of the RE found in [17] can be obtained by the method
described above.

The second problem related to this method is whether the projection provides us with
really new solutions of the RE, i.e. ones not allowing ‘regular’ factorization. It is easy to see
that this is not always so. If, for example,H2 is a one-dimensional subspace, then evidently
the projectionπ2K−(u)π2 is just one of the knownc-number solutions of the RE.

Apart from this trivial possibility, the examples considered in the following do not permit
the formulation of a criterion which would allow one to predict that a projection of a ‘regular’
solution is not ‘regular’. However, we shall demonstrate that ‘singular’ solutions can be
obtained via the projection procedure.

3. The case ofgl(n) algebra

In this section we demonstrate the method of projection, using the example ofgl(n) algebra.
Consider ann2 × n2 R-matrix

R(u) = uI + P (3.1)
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where the permutation operatorP has the entriesPαβjk = δjβδkα. The simplest quantum
L-operator satisfying equation (2.4) has the form

Lij (u) = 1

u + 1
(δiju + |j〉〈i|). (3.2)

Here

〈i| = (0, . . . ,0︸ ︷︷ ︸
i−1

, 1, 0 . . . ,0) |i〉 = (〈i|)T. (3.3)

In fact, thisL-operator coincides with theR-matrix (3.1) up to a normalization factor. The
entries of theL-operator act in the quantum spaceH = Cn.

Let us introduce two quantum projectorsπ1 andπ2

π1 =
m∑
k=1

|k〉〈k| π2 =
n∑

k=m+1

|k〉〈k| π1 + π2 = Iq (3.4)

wherem is a fixed number from the interval 16 m 6 n, andIq is the identity operator inH.
Obviously, these projectors define two orthogonal subspaces:H1 = span{|1〉, . . . , |m〉} and
H2 = span{|m+1〉, . . . , |n〉}. As a first stage we are going to construct a ‘regular’K-matrix by
means of theL-operator (3.2) and somec-number solution of the RE. Then we shall consider
the projections of thisK-matrix onto subspacesH1 andH2.

We start with the solution of the RE

K−(u) = L(u + c)T (u)L−1(−u + c). (3.5)

Here c is a constant andT (u) is a diagonalc-number solution of the RE breaking the
gl(n)-symmetry of the system down togl(m) [18]:

Tij (u) = δijhi(u). (3.6)

Here

hi(u) = 1 for i 6 m hi(u) ≡ h(u) = ξ − u
ξ + u

for i > m (3.7)

with some constantξ .
With the normalization in (3.2) we haveL−1(−u) = L(u). Thus we arrive at

K−(u) = Kd(u) +Ka(u), where

(Kd(u))ij = δij

(u + 1)2 − c2

[
(u2 − c2)hi(u) +

n∑
k=1

hk(u)|k〉〈k|
]

(Ka(u))ij = 1

(u + 1)2 − c2
[(u + c)hi(u) + (u− c)hj (u)]|j〉〈i|.

(3.8)

Thus, the ‘regular’ solution of the RE (2.6) is constructed. Next let us consider the projections
of this solution. First, we have to adjust the parameters in (3.8) such thatπ1K−(u)π2 = 0 or
π2K−(u)π1 = 0. The projections of the partKd(u) are automatically equal to zero

π1Kd(u)π2 = π2Kd(u)π1 = 0. (3.9)

As for the projections of the partKa(u), we have

(π1Ka(u)π2)ij =
{
(Ka(u))ij i > m, j 6 m
0 otherwise

(3.10)

(π2Ka(u)π1)ij =
{
(Ka(u))ij i 6 m, j > m

0 otherwise.
(3.11)
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Thus, by choosingξ = ±c in (3.7) we obtainπ1K−(u)π2 = 0 (π2K−(u)π1 = 0). In either
case the projectionsπ1K−(u)π1 andπ2K−(u)π2 satisfy the RE. We would like to emphasize,
in particular, that the parameterξ in the c-number solution (3.6) has to be adjusted to the
parameterc in the dressingL-operators for the projectionsπ1K−(u)π2 andπ2K−(u)π1 to
vanish.

Let us now focus onξ = c: in this case the projected reflection matrices are

(π1K−(u)π1)ij =


(u2 − c2 + 1)δij + 2u|j〉〈i|

(u + 1)2 − c2
i, j 6 m

δij
c + 1− u
c + 1 +u

otherwise

(π2K−(u)π2)ij = c − u
c + u


(u2 − c2 + 1)δij + 2u|j〉〈i|

(u + 1)2 − c2
i, j > m

δij
c − 1 +u

c − 1− u otherwise.

(3.12)

IntroducingL-operators, acting in the subspacesH1 andH2 only,

(L1(u))ij = (u + c)δij + |j〉〈i| i, j 6 m
(L2(u))ij = (u− c)δij + |j〉〈i| i, j > m

(3.13)

the projections (3.12) can be presented as block matrices

π1K−(u)π1 = c + 1− u
c + 1 +u

(
L1(u)L

−1
1 (−u) 0

0 1

)
π2K−(u)π2 = c − u

c + u

c − 1 +u

c − 1− u
(

1 0

0 L2(u)L
−1
2 (−u)

)
.

(3.14)

Clearly, the external factors can be removed, and we arrive at two new solutions of the RE

Ks1(u) =
(
L1(u)L

−1
1 (−u) 0

0 1

)
Ks2(u) =

(
1 0

0 L2(u)L
−1
2 (−u)

)
. (3.15)

While these solutions cannot be presented asregular solutions (2.5) of the RE they can be
factorized in terms ofsingularsolutions to (2.4): with

Lε(u) =
(
L1(u) 0

0 ε

)
. (3.16)

we can writeKs1(u) = Lε(u)Lε(−u)−1. However, the operatorLε(u) satisfies equation (2.4)
only in the limit ε → 0. Thus, we have a complete analogy with the case considered in [17].

In conclusion of this section we would like to mention some properties of ‘singular’
factorization, which make it essentially different from the ‘regular’ one. First, inserting a
c-number solutionT (u) between dressingLε-operators

Ks,T = Lε(u)T (u)L−1
ε (−u) (3.17)

we do not arrive at a new RE solution. The matrix (3.17) does not satisfy the RE. One should
not be surprised at this fact, since, as we have seen, vanishing of projectionsπ1K−(u)π2 (or
π2K−(u)π1) was provided only due to the special choice of theT -matrix (3.6).

Second, in the ‘regular’ case one can generate newK-matrices via the replacement

L(u)→ T (u) = LN(u) . . . L1(u)

where Li(u) are copies of the originalL-operator, acting in different quantum spaces.
For the ‘singular’ factors (3.16) this method fails, i.e. ifTε = Lε,N . . . Lε,1, then
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Ks,T (u) = Tε(u)T −1
ε (−u) does not solve the RE. This fact can also be explained in the

framework of the projecting method. The problem is that the subtle tuning of the boundary
and impurity properties which leads to the fulfilment of the necessary condition (2.8) cannot
be performed in the large quantum spaceHT of the matricesTε(u) andKs,T (u). This makes
it impossible to find a decompositionHT = HT ,1⊕HT ,2.

4. Kondo impurity in the supersymmetric t–J model

Our second example deals with the Kondo impurity in the supersymmetrict–J model recently
constructed in [8, 9, 16, 17]. Integrability of the periodic model is proven by construction of
the enveloping vertex model within aZ2-graded extension of the QISM [19–21]. A similar
extension of the RE is necessary, for the algebraT− it is formally identical to the ungraded
case (2.6) with a 9× 9R-matrix

R12(u) = uI + P12. (4.1)

HereP12 is theZ2-graded permutation operator

(P12)
αβ

jk = (−1)[j ][α]δjβδkα. (4.2)

TheZ2-grading is chosen in such a way that [1]= [2] = 1 and [3]= 0. TheR-matrix (4.1)
satisfies the unitarity property (2.3).

The diagonalc-number solutions of the RE are again of the form (3.6) and correspond to
boundary magnetic fields and chemical potentials, respectively [2, 13]. Recently, a new type
of quantum solution of the RE (2.6) has been found [17]:

Ks(u) =
α(u) + β(u)Sz β(u)S− 0

β(u)S+ α(u)− β(u)Sz 0

0 0 1

 . (4.3)

HereSz andS± are the usual generators of aSU(2) algebra: [Sz, S±] = ±S±, [S+, S−] = 2Sz,
S2 = s(s + 1). The functionsα(u) andβ(u) are equal to

α(u) = (c + s + 1/2)(c − s − 1/2)− u2 + u

(c + s + 1/2− u)(c − s − 1/2− u)

β(u) = 2u

(c + s + 1/2− u)(c − s − 1/2− u)

(4.4)

with a constantc.
The general structure of theK-matrix (4.3) looks very similar to (3.12) and (3.15). Indeed,

this solution can be presented in terms of ‘singular’ factorization [17]

Ks(u) = Lε(u)Lε−1(−u) (4.5)

where

Lε(u) =
 u− c − 1− Sz −S− 0

−S+ u− c − 1 +Sz 0

0 0 ε

 . (4.6)

Just as in our previous example, the operatorLε satisfies the (graded version of the) intertwining
equation (2.4) in the limitε → 0 only. All the ‘pathological’ properties of the ‘singular’
solutions, listed at the end of the previous section, are valid for theK-matrix (4.3). This leads
us to assume that in fact theK-matrix (4.3) is nothing but a projection of a ‘regular’ solution
of the RE.
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To reproduce the result (4.3) of [17] by means of the projection method we have to consider
solutions of the intertwining relation (2.4) and the reflection equation (2.6), which are invariant
under the action of the graded Lie algebragl(2|1) (see, e.g., [22, 23]). Apart from the generators
1, Sz andS± which form an (ungraded)gl(2) subalgebra, there is an additional generatorB

of even parity (charge), commuting with the spin operators, and four odd generatorsV ± and
W±. The commutation relations between even and odd generators are listed as follows:

[Sz, V ±] = ± 1
2V
± [S±, V ±] = 0 [S∓, V ±] = V ∓

[Sz,W±] = ± 1
2W
± [S±,W±] = 0 [S∓,W±] = W∓ (4.7)

[B,V±] = 1
2V± [B,W±] = − 1

2W±.
The odd generators satisfy anticommutation relations

{V ±, V ±} = {V ±, V ∓} = {W±,W±} = {V ±,W∓} = 0
{V ±,W±} = ± 1

2S
± {V ±,W∓} = 1

2(S
z ± B). (4.8)

In the following we shall consider the ‘atypical’ representation [s]+ of this algebra [22, 23].
In a basis{|b, s,m〉} whereB, S2 andSz are diagonal, this representation contains two spin
multiplets of spins ands − 1/2 with chargeb = s ands + 1/2, respectively:

H1 = span{|s, s,m〉} H2 = span{|s + 1/2, s − 1/2, m〉}. (4.9)

The non-vanishing matrix elements of the remaining operators are〈
s +

1

2
, s − 1

2
, m± 1

2

∣∣∣∣S±∣∣∣∣s +
1

2
, s − 1

2
, m∓ 1

2

〉
=
√
s2 −m2

〈
s +

1

2
, s − 1

2
, m± 1

2

∣∣∣∣V ±∣∣∣∣s, s,m〉 = ±
√
s ∓m

2
(4.10)〈

s, s,m

∣∣∣∣W±∣∣∣∣s +
1

2
, s − 1

2
, m∓ 1

2

〉
= √s ±m2.

Now we consider the following ‘regular’ quantum solution of the RE

K−(u) = L(u + c)T (u)L−1(−u + c). (4.11)

HereT (u) is thec-number solution of the RE corresponding to a boundary chemical potential

T (u) = diag

(
1, 1,

ξ − u
ξ + u

)
(4.12)

and theL-operator containing the degrees of freedom of the quantum impurity in (4.11) is
equal to [19]

(u− s − 1/2)L(u) = u− s − 1/2 +

B − Sz −S− −√2V −

−S+ B + Sz
√

2V +

√
2W +

√
2W− 2B

 . (4.13)

We have chosen the normalization such thatL−1(−u + c) = L(u− c).
For the projection of the ‘regular’K-matrix (4.11) we use the decomposition of the

impurity quantum spaceH into the direct sumH = H1⊕H2 of spaces (4.9). One can find the
projection of (4.11) onto subspacesH1 andH2 by computing the projections of theL-operator
and using

πiK−πj = [πiLπ1]T [π1L
−1πj ] + [πiLπ2]T [π2L

−1πj ] (4.14)

whereπi are projectors ontoHi , as before. These calculations are quite straightforward,
therefore we summarize the results only. The conditionπ1K−(u)π2 = 0 is satisfied by
choosingξ = c + s − 1/2 in (4.12). Then the projectionπ1K−(u)π1 exactly coincides with
the matrixKs(u) (4.3). Thus, as we have stated previously, the ‘singular’ RE solution of [17]
is indeed the projection of the ‘regular’ solution (4.11).
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5. Conclusion

We have presented a method which allows—by adjusting the parameters of thec-number
boundary matrix and those of an adjacent dynamical impurity—the construction of new
quantum solutions of the RE by means of the projection (2.9). SinceK−(u) is directly related to
the boundary term of the corresponding quantum Hamiltonian [12], satisfying condition (2.8)
amounts to (block-) diagonalization of the Hamiltonian in the Hilbert space of the impurity.
While each of these blocks may correspond to a previously known boundary condition—as
trivially seen when projecting to a one-dimensional subspace—we have presented several
cases where new representations of the RE algebra arise which do not allow the presentation
in terms of ‘regular’ factorization (2.5). These new cases include models for agl(m < n)-spin
impurity coupled to agl(n)-symmetric quantum chain and the case of anSU(2)Kondo spin in
the supersymmetrict–J chain [16, 17]. A common feature of these ‘singular’ solutions to the
RE is a remaining non-trivial symmetry in the impurity degrees of freedomafterprojection.

Note that the applicability of the projection method introduced in this paper isnotrestricted
to the case of models with rationalR-matrices considered in the previous examples: in fact,
the generalization of the results of section 3 to systems with trigonometricR-matrices and
correspondingc-number boundary matrices is straightforward.

The existence of projected boundary matrices has important consequences for the solution
of systems with open boundary conditions by means of the algebraic Bethe ansatz: proper
choice of a suitable reference state, which needs to be contained in the projected Hilbert space,
is crucial to capture the properties of the impurity site. This statement holds, in particular, for
the graded models, such as thet–J model wheredifferentBethe ans̈atze are possible starting
from various fully polarized states.

Finally, we would like to emphasize the remark of [17] regarding Kondo impurities in
closedchains: it is obvious from the discussion above that the presence of a boundary next
to the quantum impurity is essential for our construction. Using a ‘singular’L-operator such
asLε→0(u) from (4.6) to construct a periodic chain leads to the Heisenberg model with the
impurity of Andrei and Johannesson [14] rather than a Kondo spin in at–J model.
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